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1. INTRODUCTION

With the advent of large digital computers, numerical

modeling has taken an important place in atmospheric science.

Constructing a numerical model often involves two steps. The

first step is to formulate a set of continuous equations which

represent the dynamics and the physics of interest in the

atmosphere. The second step is to discretize these equations

so that they may be solved on a computer. ij -

Broadly speaking, the discretization methods for solving the

continuous equations may be grouped as Eulerian or Lagrangian

(fully Lagrangian or semi-Lagrangian) methods. The Eulerian

methods may be further classified according to the techniques

employed for the integration in time and the approximations used

for the spatial derivatives. The integration in time can be

either explicit or implicit (fully implicit or semi-implicit)

while the spatial discretization may themselves be grouped under

two general headings: series expansion methods and finite differ-

ence methods. The Galerkin procedure is often involved in the

series expansion methods. Some ccmmonly used series expansion

methods are finite element, spectral and collocation. In the

finite difference method, the flux form is often preferred to

the advective form in order to maintain in the discretized

equations integral constraints of the continuous atmosphere.

In addition, the variables are staggered around the grid points

for the sake of better geostrophic adjustment. Of the staggered

grids B, C, D and E (Arakawa and Lamb, 1977), the C-grid has

found favor amongst numerical modelers (Arakawa and Lamb, 1977;

Schoenstadt, 1978) despite criticisms raised by some authors
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(Mesinger, 1973). There are very few finite difference models

that employ a non-staggered grid. The C-grid is currently used

in the Navy Operational Regional Atmospheric Prediction System

(Hodur, 1982, 1987).

There are many problems in environmental science where a

central concern is the manner in which a trace constituent or

water vapor is transported by moving fluid. It is important to

find a suitable finite difference algorithm on a staggered grid

for this problem. In this report, we use a simple water vapor

transport problem (i.e., one-dimensional linear advection of

water vapor) to study the advective processes on the staggered

grid. It is illustrated that caution must be taken in defining

flux on the staggered C-grid. It is shown that accuracy can be

lost in the fourth-order centered differencing if flux is defined

improperly. A consistent way of defining flux with the fourth-

order finite differencing is presented.

2. MODEL PROBLEM AND DISCRETIZATION SCHEMES

To illustrate the points mentioned above, we use finite

difference schemes to discretize the one-dimensional, constant

coefficient (u = const.) advection equation

3q aq
- + u - = 0 (2.1)
at ax

in the periodic domain C-1,11 with the initial condition
2

x
q(x,t = 0) = exp I- (-) I • (2.2)

0.2

This problem is the simplest prototype of a model involving wave

or advective processes. For the test purpose, Eq. (2.1) can be

easily written in flux form as
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3q 3F
-+ - = 0 (2.3a)
3t 3x

F = uq (2.3b)

and solved on the staggered grid shown in Figure 1. Note that

the flux is defined on the velocity point. Since the q points

and flux points are staggered, we shall define the flux in terms

of surrounding q values and consider the spatial derivative by

either second-order or fourth-order centered differences.

Schemes (I)-(V), which involve different ways to define the

flux and to approximate the spatial derivative, are used to

discretize (2.3). The definition of flux and space differencing

of these schemes are as follows:

Scheme (I)

3qi
x - XFi (2.4a)

at

(ui+1/2 + lui+i/21) (ui+1/2 - lui+1/21)
Fi+/ = + qI+_L (2.4b)

2.0 2.0

Scheme (II)

aqi 9
- = - (- Sx Fi - 43x Fi) (2.5a)
at 8 8

(ui+i/2 + lui+1 /21) (ui+ 1 /2  - lui+ 1 / 2 1)
Fi+1/2 = %1i + d+l" (2.5b)

2.0 2.0

Scheme (III)

3qi

- = - Sx Fi (2.6a)
at

Fi+i/2 = ui+1/ 2  (2.6b)
2.0
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F F F F
q U q U q U q U q

i-2 i-3 -1i i A+ i+ i4-2

Figure 1. Staggered grid of tvo variables.
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Scheme (IV)

3qi 9 1
(- Sx F i - - S3x F i ) (2.7a)

at 8 8

Fi+i/2 = ui+i/2 (2.7b)
2.0

Scheme (V)

aqi 9 1
- = (- Sx F i - - 63x F i ) (2.8a)
at 8 8

Fi+1 / 2  = [9/16(qi+i + qi) - 1/16(qj+ 2 + qi-I ) ] ui+1 /2 . (2.8b)

where

Fi+i/2 - Fi 1 i/2 Fi+3/ 2 - Fj3/2

Sx F i = and 6 3x F i =
6x 36x

Forward time integration is used in Scheme (I) and (II)

while the second-order leapfrog time integration is used in

Schemes (III), (IV) and (V) for their time discretization. To

suppress the computational mode in the leapfrog time integration,

an Asselin filter with a damping coefficient of 0.02 is used.

Note that the first-order upstream flux is used in both Schemes

(I) and (II), while the second-order flux is used in Schemes

(III) and (IV). The flux in Scheme (V) is fourth-order in

accuracy according to the Taylor expansion. The spatial

derivatives are approximated by either second-order centered

differencing (Schemes (I) and (III)) or fourth-order centered

differencing (Schemes (II), (IV) and (V)). Thus, Schemes (III)
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and (V) define the flux and approximate the spatial derivative

with the same order of accuracy (i.e., second-order for (III)

and fourth-order for (V)). In the linear advection equation,

space ditferencing of Scheme (I) is the same as the first-order

upstream differencing. Note that Schemes (II) and (IV) involve

a mixture of accuracy in defining flux and approximating the

spatial derivatives. The fourth-order Scheme (V), which is

for the C-grid even in a two-dimensional situation, is

analogous to the scheme described by Gerrity et al. (1972) for

the non-staggered grid and Campana's (1973) implementation for

the B-grid.

Recently, Professor A. Arakawa (personal communication),

in the context of solving the continuity equation in a primitive

equation model using isentropic surfaces as a vertical coordinate,

has proposed a generalization of Takacs' (1985) scheme which has

very small computational dispersion and which guarantees positive

results. Arakawa's scheme is third-order in accuracy. We will

include Arakawa's scheme in our results for comparison. Formula-

tion of Arakawa's scheme is presented in Appendix A. In addition

to Arakawa's method, we will also test the positive definite

advection scheme of Smolarkiwicz (1983). Similar to Arakawa's

method, Smolarkiwicz's method involves predictor-corrector

procedure; but, the cost of Smolarkiwicz's method is lover

compared to Arakawa's method. Detail of Smolarkiwicz's scheme

is in Appendix B.
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2. MODEL PROBLEM ANALYSIS

For the one-dimensional constant coefficient advecticn equa-

tion, Scheme (1) employs the first-order upstream differencing

while Scheme (III) employs the second-order centered differencing.

Detailed analysis of Scheme (I) and Scheme (III) for the one-

dimensional linear advection equation can be found in Haltiner and

Williams (1980). To better understand the accuracy and stability

properties of Schemes (IV) and (V) we now follows an argument

similar to that given by Haltiner and Williams (1980). Consider

the following fourth-order, space-centered differencing and

leapfrog time differencing for the constant coefficient advection

(Eq. (2.1)).

n+1 n-i n n
qm - qm qm+l - qm-i

= - u(a
2,nt 26x

(3.1)
n n n n

qm+2 - qm-2 qm+3 - qm-3+ b + c )

46x 66x

Since each of the terms with coefficients a, b and c are valid

approximations for 3F/3x, it is clear that (3.1) will be a

consistent scheme provided that a + b + c = 1. The requirement

for (3.1) to be fourth-order accurate is that the second-order

truncation terms vanish. This implies that the sum of the

Taylor series terms

a(- 6x3/3f(26x), b(-) (26x)3/3!(46x),x3 3 %

ax 3 ax3

and a similar term,
3

3x33
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n n nfrom series expansions for qm+l, qm±_2 and qM±3 must vanish.

Thus the resulting truncation error in (3.1) is 0(,t 2 ) + 0(L^x 4 ) if

a + 4b + 9C = 0. (3.2)

The stability will be investigated next. Using the usual

notation, we assume a solution of the form

n Licnt + i)'mex
m = At (3.3)

and define

b c
f(pex) = a sin P x + - sin2 p'x + - sin3 pex (3.4)

2 3

f'(P'x) a cos MAx + b cos2 )AIx + c cos3 A-,,x. (3.5)

Substitution of (3.3) into (3.1) leads to

u~t

sin (6t =- f(Ptx) (3.6)

If a is real, neutral solutions result with no damping or amplifi-

cation, as evident from (3.3). The condition for a real is that

the right side of (3.6) has magnitude less than or equal to 1,

otherwise it is complex. To insure stability for all wavelengths,

it is necessary to find the maximum magnitude of f(96x). Let

fE(,mx)max) be the maximum value of f(P'x). Then the following

criterion must be satisfied to maintain stability for all wave

numbers.

u-t

I-1 l/ifl[(Px)max]I • (3.7)
6x

.. . . n l i I l l I I I



The phase speed and group velocity resulting from the discretiza-

tion of (3.1) can also be derived. The phase velocity CF is

1

CF = u * sin 1 [CR*f(tx)] (3.8)
Pux CR

while the group velocity Cg is

Cg = u * f'U('ex)/(1-[CR * f(Ptx)] 2 )1/ 2  (3.9)

where CR is the Courant number.

For the one-dimension linear advection problem, we car

easily rearrange the leapfrog time discretization of (2.7) and

(2.8) into the form of (3.1). We will get a = 13/12, b = - 1/12

and c = 0 for Scheme (IV) and a = 87/64, b = -3/8 and c = 1/64

for Scheme (V). Note that for the non-staggered grid with

fourth-order difference, as given in Haltiner and Williams

(1980), a = 4/3, b = -1/3 and c = 0. Although Schemes (IV) and

(V) are consistent, Scheme (IV) is not a fourth-order scheme

because it violates (3.2). Note that the minimum resolvable

wavelength of 26x is stationary in both Schemes (IV) and (V)

according to (3.8). Also there are physical and computational

modes in the numerical solutions as revealed by (3.8).

The group velocity for a 2Ax length in Scheme (V) is

strongly negative with Cg = -7/4u while the group velocity for

a 4Ax length with CR = 0.7 is almost the same as u. It can be

concluded therefore that Scheme (V) can lead to more rapid

spreading of noise to the phase velocity in the very short

wavelengths from any source in the model, physical or computa-

tional. Table 1 gives the ratio of finite difference wave speed
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Table 1. CF/U as functions of CR and Lx.

Schemes CR 26x 46x 66x 8Atx 10Ax 12D x

Non-staggered
4th Order

a = 4/3 0.2 0 0.86 0.97 0.99 1.00 1.00

b = -1/4 0.4 0 0.89 0.99 1.00 1.01 1.01

c = 0 0.6 0 0.98 1.03 1.03 1.02 1.01

(IV)

a = 13/12 0.2 0 0.69 0.86 0.92 0.96 0.98

b = -1/12 0.4 0 0.71 0.88 0.93 0.96 0.98

c = 0 0.6 0 0.75 0.91 0.95 0.98 0.99

(V)

a = 87/64 0.2 0 0.87 0.97 0.99 0.99 0.99

b = -3/8 0.4 0 0.91 0.99 1.00 1.00 1.00

c = 1/64 0.6 0 1.00 1.04 1.03 1.01 1.01

to true wave speed, CF/U, as a function of wavelength in terms

of &x versus Courant number CR for Schemes (IV), (V) and the

non-staggered fourth-order finite difference for the constant

coefficient advection equation. From Table 1, we conclude

that Scheme (IV) is only of second-order accuracy despite the

additional calculation performed for the fourth-order spatial

derivative and Scheme (V) is a proper implementation of the

fourth-order finite difference scheme on the staggered grid

shown in Figure 1.

In view of the significant accuracy improvement in the

fourth-order schemes, as compared to the second-order schemes,

we now concentrate on the stability analysis of the fourth-order
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Scheme V). With the parameters a, b and c in Scheme (V), we

found that (.uax)max z 750 and the stability condition (3.7) of

Scheme (V) gives

u~t

ICRI = i-I < 0.71 . (3.10)
&x

Equation (3.10) indicates that the CFL criterion associated with

Scheme (V) is more restrictive, and, for a given u and &x, the

time step would have to be 29 percent smaller for the fourth-

order Scheme (V) versus the second-order Scheme (III). Note

that the CFL criterion of Scheme (V) is the same as the non-

staggered fourth-order finite difference of Haltiner and

Williams (1980)

4. NUMERICAL RESULTS

A very small time step is used in the time integrations

presented in this section so that the error in the computation

is dominated by the spatial discretization error due to finite

difference methods.

Figure 2 shows the approximate solutions at t = 2.0 obtained

by Schemes (I) - (V) and the scheme of Arakawa with number of

grid points N = 32. Note that Schemes (I) and (II) produces

practically identical results when compared with Schemes (III)

and (IV). It is clear from Figure 2 that Scheme (V) gives a much

better solution than do Schemes (III) and (IV). Schemes (I),

(II), and the Smolarkiwicz scheme and Arakawa scheme generates

positive definite fields. The Arakawa scheme is associated with

the least damping among all the positive-definite schemes.

11
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Figure 3 illustrates the numerical solutions at t = 2.0

obtained by all the positive-definitive schemes. Smolarkiwicz's

scheme is tested with various S factors and with two corrective

steps. There seems to be a slightly upwind phase shift with the

Smolarkiwicz scheme for S = 1. Moreover, the choice of S factor

does not seem to be straightforward. Both the Arakawa and

Smolarkiwicz schemes preserve the mass very well.

Figure 4 shows the corresponding L2 error as a function of

the number of grid points for t - 2.0.

1 N 21/2
Here L2 error = -- [u(xj,t) - Ua(xj,t)]

N j=1

with ua(xj,t) is the analytical solution and u(xj,t) is a

computed solution at grid xj at time t. The different

convergence properties of different schemes can be easily seen

from Figure 4. For example, Scheme (I) and (II) converge to the

analytical solution with first-order accuracy (as expected from

upstream differencing) while Schemes (III) and (IV) converge to

the analytical solution with the same second-order accuracy. The

fourth-order accuracy of Scheme (V) is obvious when compared to

Arakawa's third-order scheme. Figure 3 reinforces the observa-

tion from Figure 2 that higher accuracy is associated with the

Scheme (V) solution. In particular, the Scheme (V) solution is

about ten times more accurate than the Scheme (III) and (IV)

solutions with the same number of grid points. Because Scheme

(V) only requires less than three times as much computation as

Scheme (III), there is a net gain in accuracy by using fourth-

order Scheme (V.
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Positive-Definite Schemes2.0
(I)--N=32
Arakawa ----

1.5 S= 1.
S=1.5

1.0-

0.5-

CYII ..

x" 0.0 , "" 1.0 ' ._:--

-0.5-

Smolarkiwicz
S=1.0 ........
S=1.5 ....
S =1.8

-1.5-

2 Corrective Steps

I I
-1.0 -0.5 0.0 0.5 1.0

x
Figure 3. Analytical and numerical solutions of positive

definite schemes with N=32 at t=2.
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Figure 4. L2 error in the numerical solutions of the test
problem as functions of N4 (number of grids) at t=2.
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scheme with two corrective steps.



5. CONCLUDING REMARKS

In this report, we used the one-dimensional constant

advection of a Gaussian function to test four positive-definite

schemes ((I), (II), Smolarkiwicz scheme, and Arakawa scheme) and

three even-order accurate schemes ((III), (IV) and (V)) on the

staggered grid. It is shown that for the test problem, Schemes

(I) and (II) produce identical numerical results. The Arakawa

scheme produces the least damping among all the positive-definite

schemes; however, there are expensive computations required with

the Arakawa scheme. The Smolarkiwicz scheme seems to be cost

effective. The slightly upstream shifted phase in numerical

solution as well as the determination of the S factor may be

the drawback of the scheme. Of the even-order accurate schemes,

Scheme (V) produces very accurate results. Stability analysis

indicates that a reduction in time step size (29% smaller) is

required when Scheme (V) is used instead of Scheme (III).

Scheme (V), however, produces results ten times more accurate

than Schemes (III) and (IV) with the same number of grid points.

Also, Scheme (V) only requires less than three times as much

computation as Scheme (III).

Based on the calculations in this report, we suggest that

Schemes (II) and (IV) should never be used in a staggered grid

model. This is because the accuracy associated with the flux is

inconsistent with the accuracy of the approximations to the

spatial derivatives. The additional calculations performed in

the fourth-order centered differencing in these two schemes do

not increase model accuracy.
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Finally we recommend that for the purpose of horizontal

advection of water vapor mixing ratio on the C-grid, Scheme (V)

should replace (IV) in the Navy Operational Regional Atmospheric

Prediction System (Hodur 1982, 1987). Improvement of the model

accuracy from the replacement is expected.

In closing we note that there are many other algorithms that

can be applied to the transport of trace constituent or water

vapor in atmospherical models. A more complete review can be

found in Rood (1987). In addition to many useful finite

difference schemes, there are Lagrangian and series expansion

Eulerian methods. The pseudospectral (collocation) and the

semi-Lagrangian methods are of special interest. Rasch and

Williamson (1989) used shape preserving interpolation schemes

in the semi-Lagrangian method to maintain the local monotonicity

of the simulated fields. Since the semi-Lagrangian method can be

used in conjunction with the finite difference - finite element

and spectral approaches with a larger time step than the Eulerian

methods - the shape-preserving semi-Lagrangian scheme seems to be

very useful.

The efficiency of the spectral or collocation method

often lies in its exponential convergence property (Fulton

and Schubert, 1987). For the linear advection equation, the

pseudospectral method is the same as the Galerkin or tau

method except that the 26x wave is stationary in the pseudo-

spectral method. Finite differences on non-staggered grids and

Chebyshev collocation methods have been applied to the same

advection problem studied in this report (Fulton and Schubert

(1987)).
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APPEN4DIX A

Arakawa 's method is in the prediction-correction form.

Predictor:

* n
i= -i 6t SxFi (Al)

where

+ n -n

Fi1/ ui1 /2 qi + ui1 /~1 2 qi+l (A2)

=i1/ 0.5 (ui+1/2 + Iuj+1 /2I) (A3)

u=1/ 0.5 (ui+1/2 - Iul+1/21) .(M4)

Corrector:

q = qi 6 t SxF (A5)

where

*n + n

* =+ qi+l + qi q1 + i+l i+
Fi12=u.iz 2.0 + ui+1/2 2.+ i+/ (A6)

t +q+ _ n)

-i1/ ai+1/2 (ui+l/2 P4+1/2 (q 4  - j

ui+l/2 1i+1/2 (cii -i q 1 )

+ ui+l1i2 Pi+1/2 (qi - qij'.)-

ui+i/2 9'i+1/2 (qi+l -i2)

1 + Iui+ 1/ 1 -

ai 1 /2 =(A8)

6.0

A-1



+ 1 - 2xi+ 1/2 +
I+i/2 r-l+/2 + 1 (A9)

^+ +

i+1/2 = 1 - ri+i/2 (AlO)

n n n )2

(q i-I - 2qi + q9+1 )
rii2= 2 nf (All)

(qi-i - 2q9 + qi+l) + qi qI+l + ;

n n n 2
(qi 2qi+l + qi+2)

ri+1/2 = n n (A12)
(q - 2q9+1 + q% 2 ) +q q .+ + '

^i+1 = -u 1/2
= (u+1/2 ui.i/2) (A13)

ui+i/2 = (lui+i/21Ilui+3/21) 2  
(A14)

Here the superscript n indicates the nth time level during time

integration and E = 10 - 1 5
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APPENDIX B

The Smolarkiwicz scheme is in the predictor-corrector form.

Predictor:

(Ui+l/2 + lui+1 / 2 1) n (ui+l/2 - lUi+1/21)
Fi= ___-_2.0 _ qi 2.0 /i+l (B)

2.0 2.0

* n
qi= qi - &t Sx Fi (B2)

Corrector:

Ax2 * *

(lui+I/21 - At ui+1 / 2 )(qi+l - qi)

2.0
ui+/2= * S (B3)

6x

(qi + qi+j+ )

2.0

(B4)

, (ui+i1/ 2 + lui+l/21) , (Ui+l/2 - lui+1 /21) ,
Fi+1/2 =i + qi+l

2.0 2.0

n+1 n *
i = qi - At 6x Fi (B5)

Here E = 10 - 1 5, S is an engineer factor used to improve the

quality of solution from experiment. The superscript n indicates

the nth time level during time integration. The corrector step

can be repeated to improve the solution according to Smolarkiwicz

(1983). We have also tested the scheme with two corrective

steps.

B-1
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